6 resultados para Activated-sludge Systems

em National Center for Biotechnology Information - NCBI


Relevância:

30.00% 30.00%

Publicador:

Resumo:

We demonstrate performance-related changes in cortical and cerebellar activity. The largest learning-dependent changes were observed in the anterior lateral cerebellum, where the extent and intensity of activation correlated inversely with psychophysical performance. After learning had occurred (a few minutes), the cerebellar activation almost disappeared; however, it was restored when the subjects were presented with a novel, untrained direction of motion for which psychophysical performance also reverted to chance level. Similar reductions in the extent and intensity of brain activations in relation to learning occurred in the superior colliculus, anterior cingulate, and parts of the extrastriate cortex. The motion direction-sensitive middle temporal visual complex was a notable exception, where there was an expansion of the cortical territory activated by the trained stimulus. Together, these results indicate that the learning and representation of visual motion discrimination are mediated by different, but probably interacting, neuronal subsystems.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Mutation of the highly conserved leucine residue (Leu-247) converts 5-hydroxytryptamine (5HT) from an antagonist into an agonist of neuronal homomeric α7 nicotinic acetylcholine receptor expressed in Xenopus oocytes. We show here that acetylcholine (AcCho) activates two classes of single channels with conductances of 44 pS and 58 pS, similar to those activated by 5HT. However, the mean open time of AcCho-gated ion channels (11 ms) is briefer than that of 5HT-gated ion channels (18 ms). Furthermore, whereas the open time of AcCho channels lengthens with hyperpolarization, that of 5HT channels is decreased. In voltage-clamped oocytes, the apparent affinity of the α7 mutant receptor for 5HT is not modified by the presence of dihydro-β-erythroidine, which acts on the AcCho binding site in a competitive manner. This indicates a noncompetitive action of 5HT on nicotinic acetylcholine receptors. Considered together, our findings show that AcCho gates α7 mutant channels with similar conductance but with different kinetic profile than the channels gated by 5HT, suggesting that the two agonists act on different docking sites. These results will help to understand the crosstalk between cholinergic and serotonergic systems in the central nervous system.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

G protein-gated inward rectifier K+ (GIRK) channels mediate hyperpolarizing postsynaptic potentials in the nervous system and in the heart during activation of Gα(i/o)-coupled receptors. In neurons and cardiac atrial cells the time course for receptor-mediated GIRK current deactivation is 20–40 times faster than that observed in heterologous systems expressing cloned receptors and GIRK channels, suggesting that an additional component(s) is required to confer the rapid kinetic properties of the native transduction pathway. We report here that heterologous expression of “regulators of G protein signaling” (RGS proteins), along with cloned G protein-coupled receptors and GIRK channels, reconstitutes the temporal properties of the native receptor → GIRK signal transduction pathway. GIRK current waveforms evoked by agonist activation of muscarinic m2 receptors or serotonin 1A receptors were dramatically accelerated by coexpression of either RGS1, RGS3, or RGS4, but not RGS2. For the brain-expressed RGS4 isoform, neither the current amplitude nor the steady-state agonist dose-response relationship was significantly affected by RGS expression, although the agonist-independent “basal” GIRK current was suppressed by ≈40%. Because GIRK activation and deactivation kinetics are the limiting rates for the onset and termination of “slow” postsynaptic inhibitory currents in neurons and atrial cells, RGS proteins may play crucial roles in the timing of information transfer within the brain and to peripheral tissues.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Pain differs from other sensations in many respects. Primary pain-sensitive neurons respond to a wide variety of noxious stimuli, in contrast to the relatively specific responses characteristic of other sensory systems, and the response is often observed to sensitize on repeated presentation of a painful stimulus, while adaptation is typically observed in other sensory systems. In most cases the cellular mechanisms of transduction and sensitization in response to painful stimuli are not understood. We report here that application of pulses of noxious heat to a subpopulation of isolated primary sensory neurons rapidly activates an inward current. The ion channel activated by heat discriminates poorly among alkali cations. Calcium ions both carry current and partially suppress the current carried by other ions. The current is markedly increased by bradykinin, a potent algogenic nonapeptide that is known to be released in vivo by tissue damage. Phosphatase inhibitors prolong the sensitization caused by bradykinin, and a similar sensitization is caused by activators of protein kinase C. We conclude that bradykinin sensitizes the response to heat by activating protein kinase C.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper, we demonstrate an approach by which some evoked neuronal events can be probed by functional MRI (fMRI) signal with temporal resolution at the time scale of tens of milliseconds. The approach is based on the close relationship between neuronal electrical events and fMRI signal that is experimentally demonstrated in concurrent fMRI and electroencephalographic (EEG) studies conducted in a rat model with forepaw electrical stimulation. We observed a refractory period of neuronal origin in a two-stimuli paradigm: the first stimulation pulse suppressed the evoked activity in both EEG and fMRI signal responding to the subsequent stimulus for a period of several hundred milliseconds. When there was an apparent site–site interaction detected in the evoked EEG signal induced by two stimuli that were primarily targeted to activate two different sites in the brain, fMRI also displayed signal amplitude modulation because of the interactive event. With visual stimulation using two short pulses in the human brain, a similar refractory phenomenon was observed in activated fMRI signals in the primary visual cortex. In addition, for interstimulus intervals shorter than the known latency time of the evoked potential induced by the first stimulus (≈100 ms) in the primary visual cortex of the human brain, the suppression was not present. Thus, by controlling the temporal relation of input tasks, it is possible to study temporal evolution of certain neural events at the time scale of their evoked electrical activity by noninvasive fMRI methodology.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

ATP has recently been identified as a fast neurotransmitter in both the central and peripheral nervous systems. Several studies have suggested that ATP can also affect the release of classical neurotransmitters, including acetylcholine with which it is co-released. We have searched for ATP receptors on a cholinergic presynaptic nerve terminal using the calyx-type synapse of the chicken ciliary ganglion. ATP was pulsed onto the terminals under voltage clamp and induced a short latency cation current that exhibited inward rectification and marked desensitization. This current was not seen with adenosine but was mimicked by several sterically restricted ATP analogs and was blocked by suramin. ATP-activated single ion channels exhibited prominent flickering and had a conductance of approximately 17 pS. Our results demonstrate a ligand-gated P2X-like purinergic receptor on a cholinergic presynaptic nerve terminal.